
Modelling 1
SUMMER TERM 2020

Lecture 7

Representing Geometry
Michael Wand · Institut für Informatik · .

Motivation

Modeling

Available tools

▪ Vectors (in linear spaces)

▪ Functions (high-res vectors)

Goal

▪ Model more complex phenomena

▪ Map to linear representation

Example

▪ Geometric objects

▪ Many phenomena have a geometric interpretation

Geometric Modeling

What do we want to do?
empty space

(typically ℝ3)

geometric object

ℬ ⊂ ℝ𝑑

ℬ

ℝ𝑑

Fundamental Problem

Problem

ℝ𝑑

infinite number of points my computer: 32GB of memory

Encode continuous model with finite information

ℬ

Modeling Approaches

Two Basic Approaches

▪ Discrete representations

▪ Fixed discrete bins

▪ “Continuous” representations

▪ Mathematical description

▪ Evaluate continuously

Fixed Bins (Voxels, Pixels)

Discrete Representations

You know this...

▪ Fixed Grid of values:
1,… , 𝑛1 ×⋯× 1,… , 𝑛𝑑𝑠 → ℝ𝑑𝑡

▪ Typical

▪ 𝑑𝑠 = 2, 𝑑𝑡 = 3: Bitmap images

▪ 𝑑𝑠 = 3, 𝑑𝑡 = 1: Volume data
(scalar fields)

▪ 𝑑𝑠 = 2, 𝑑𝑡 = 1: Depth maps
(range images)

Volume Data (RGB𝛼)

Continuous
Modeling Zoo

Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models

Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models

Parametric Models

Parametric Models

▪ f maps from parameter domain  to target space

▪ Evaluation of f : one point on the model

u

v

(u, v)

f (u, v)f

ℝds
Sℝdt

output: 1D output: 2D output: 3D
in

p
u

t:
 3

D
in

p
u

t:
 2

D
in

p
u

t:
 1

D

u

f(t)t

function graph

x

t

plane curve

t

space curve

deformed area surface

volumetric object

y

x

y

z

u

v

x

y u

v

x

y

z

u
v

y

z

w

x

Linear Modeling?
Linear representation

▪ 𝑓 is a linear object

▪ Linear ansatz:

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝐱

Non-linear (read: difficult)

▪ Reshaping Ω (domain)

▪ Changing the topology

▪ Reparametrization (warping within Ω)

▪ Example: associating points 𝐱 ∈ Ω with data

▪ “Correspondence problem”

“easy”
“difficult”

→ total least squares

Example

Building Smooth Functions
with B-Splines

Goal: Smooth Curves/Surfaces

Splines in Computer Graphics (& Numerics)

▪ Curve roughly follows control points

▪ Curve should be smooth (𝐶2) everywhere

▪ Curve should bend minimally

▪ In a certain sense, more later

Build smooth function, linear combine from it!

1

2 3

4

5

6

Cubic Uniform B-Splines

Cubic uniform B-Splines

▪ Piecewise cubic functions

▪ 𝐶2 continuous

▪ Popular choice

Ansatz

▪ Design one basis function b(t)

▪ 𝑏(𝑡) is C2 continuous.

▪ 𝑏(𝑡) is piecewise polynomial, degree 3 (cubic).

▪ 𝑏(𝑡) has local support.

▪ Overlaying shifted 𝑏(𝑡 + 𝑖) forms a partition of unity.

▪ 𝑏(𝑡)  0 for all 𝑡

1.0

0.8

0.6

0.4

0.2

0.0 1.0 2.0 3.0 4.0

Basis Function
1.0

0.8

0.6

0.4

0.2

0.0 1.0 2.0 3.0 4.0

basis function b(t)

p1(t)

p2(t-1)

p4(t-3)

p3(t-2)()

()

()32
4

32
3

32
2

3
1

331
6

1
)(

364
6

1
)(

3331
6

1
)(

6

1
)(

ttttp

tttp

ttttp

ttp

−+−=

+−=

−++=

=

()

()

()32
4

32
3

32
2

3
1

331
6

1
)(

364
6

1
)(

3331
6

1
)(

6

1
)(

ttttp

tttp

ttttp

ttp

−+−=

+−=

−++=

=

()

()

()32
4

32
3

32
2

3
1

331
6

1
)(

364
6

1
)(

3331
6

1
)(

6

1
)(

ttttp

tttp

ttttp

ttp

−+−=

+−=

−++=

=

()

()

()32
4

32
3

32
2

3
1

331
6

1
)(

364
6

1
)(

3331
6

1
)(

6

1
)(

ttttp

tttp

ttttp

ttp

−+−=

+−=

−++=

=

()
()
()


















−−−+−−

−+−−

−−−+−+





=


















−

−

−





=

4 if0

43 if)3()3(3)3(31

32 if)2(3)2(64

21 if)1(3)1(3)1(31

10 if

0 if0

4 if0

43 if)3(

32 if)2(

21 if)1(

10 if)(

0 if0

)(

32

6

1

32

6

1

32

6

1

3

6

1

4

3

2

1

t

tttt

ttt

tttt

tt

t

t

ttp

ttp

ttp

ttp

t

tb

Shifted Basis Functions

Basis function:

▪ Consists of four polynomial parts p1...p4.

▪ Shifted basis b(t – i): spacing of 1.

▪ Each interval to be used must be overlapped by 4 different bi.

1.0

0.8

0.6

0.4

0.2

0.0 1.0 2.0 3.0 4.0

1.0

0.8

0.6

0.4

0.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

basis function b(t) shifted basis functions b(t - i) for [0..6]

i=0 i=1 i=2 i=3i=-1

p1(t)

p2(t-1)

p4(t-3)

p3(t-2)

Example: Uniform B-Spline Curves
one segment

two segments

three segments

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)

Example: Uniform B-Spline Curves
one segment

two segments

three segments

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)

𝑓 =෍

𝑖=1

4

𝐩𝑖𝑏𝑖

𝑓 =෍

𝑖=1

5

𝐩𝑖𝑏𝑖

𝑓 =෍

𝑖=1

6

𝐩𝑖𝑏𝑖

𝐩1

𝐩2
𝐩3

𝐩4

𝐩1

𝐩2
𝐩3

𝐩4
𝐩5

𝐩1

𝐩2
𝐩3

𝐩4
𝐩5

𝐩6

Spline Surfaces

Tensor product surfaces

▪ Simple construction

▪ Grid of control points

▪ Rectangular patches

Tensor Product Surfaces

Simple Idea:

▪ Basis for a one dimensional function space

𝐵 𝑐𝑢𝑟𝑣 = 𝑏1 𝑡 , 𝑏2 𝑡 , … , 𝑏𝑛 𝑡 ,

𝑏𝑖: 𝑎, 𝑏 → ℝ

▪ Two parameter basis from all possible products:

𝐵 𝑠𝑢𝑟𝑓 = 𝑏1 𝑢 𝑏1 𝑣 , 𝑏1 𝑢 𝑏2 𝑣 ,… , 𝑏𝑛 𝑢 𝑏𝑛 𝑣

𝑏𝑖 ⋅ 𝑏𝑗: 𝑎, 𝑏
2 → ℝ

Tensor Product Surfaces

Tensor product basis

b1(u) b2(u) b3(u) b4(u)

b1(v) b1(v)b1(u) b1(v)b2(u) b1(v)b3(u) b1(v)b4(u)

b2(v) b2(v)b1(u) b2(v)b2(u) b2(v)b3(u) b2(v)b4(u)

b3(v) b3(v)b1(u) b3(v)b2(u) b3(v)b3(u) b3(v)b4(u)

b4(v) b4(v)b1(u) b4(v)b2(u) b4(v)b3(u) b4(v)b4(u)

2D Spline Basis

Tensor Product Surfaces

Tensor Product Surfaces:

▪ “Curves of Curves”

▪ Order does not matter

𝑓 𝑢, 𝑣 =෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 ⋅ 𝐩𝑖,𝑗

=෍

𝑖=1

𝑛

𝑏𝑖 𝑢 ෍

𝑗=1

𝑛

𝑏𝑗 𝑣 ⋅ 𝐩𝑖,𝑗

=෍

𝑗=1

𝑛

𝑏𝑗 𝑣 ෍

𝑖=1

𝑛

𝑏𝑖 𝑢 ⋅ 𝐩𝑖,𝑗

Meshes of Spline Patches

Spline mesh

▪ Quad-mesh

▪ Continuity conditions etc. (lecture of its own)

▪ Popular choice: “Trimmed NURBS”

▪ Rational, non-uniform B-Splines; higher degrees

▪ Trimming curves in parameter domain

1

2

3

Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models

Primitive Meshes

Primitive Meshes

▪ Collection of geometric primitives

▪ Triangles, Quadrilaterals

▪ Spline patches etc.

▪ Primitives are typically
parametric surfaces

Triangle meshes rule the world (“triangle soup”)

Primitive Meshes

Composite model

▪ Mesh encodes topology, rough shape

▪ Primitive parameter encode local geometry

1

2

3

Triangle Meshes

Attributes

How to define a triangle?

▪ We need three points in ℝ3(obviously).

▪ But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

Shared Attributes in Meshes

In Triangle Meshes:

▪ Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

Attributes

In general:

▪ Vertex attributes:

▪ Position (mandatory)

▪ Normals

▪ Color

▪ Texture Coordinates

▪ Face attributes:

▪ Color

▪ Texture

▪ Edge attributes (rarely used)

▪ E.g.: Visible line

Data Structures

Simplest: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

Half edge data structure:

▪ Half edges, connected by clockwise / ccw pointers

▪ Pointers to opposite half edge

▪ Pointers to/from start vertex of each edge

▪ Pointers to/from left face of each edge

Adjacency Data Structure

// a vertex
struct Vertex {

HalfEdge* someEdge;
/* vertex attributes */

};

// the face (triangle, poly)
struct Face {

HalfEdge* half;
/* face attributes */

};

Implementation

// a half edge
struct HalfEdge {

HalfEdge* next;
HalfEdge* previous;
HalfEdge* opposite;

Vertex* origin;
Face* leftFace;
EdgeData* edge;

};

// the data of the edge
// stored only once
struct EdgeData {

HalfEdge* anEdge;
/* attributes */

};

Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models

Particle Representations

Point-based Representations

▪ Set of points

▪ Points are (irregular) sample of the object

▪ Need additional information to deal with “the empty
space around the particles”

additional
assumptions

Meshless Meshes...

Point Clouds

▪ Triangle mesh without the triangles

▪ Only vertices

▪ Attributes per point

per-vertex normals

per-vertex color

Particle Representations

Helpful Information

▪ Each particle may carries a set of attributes

▪ Must have: Its position

▪ Additional geometry:
Density (sample spacing), surface normals

▪ Additional attributes:
Color, physical quantities (mass, pressure, temperature), ...

▪ Addition information helps reconstructing
the geometric object described by the particles

The Wrath of Khan

Why Star Trek is at fault...

▪ Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

▪ “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” [Reeves 1983]

▪ Movie: Genesis sequence

Geometric Modeling

3D Scanners

▪ 3D scanner yield point
clouds

▪ Have to deal with points
anyway

▪ Algorithms that directly
work on “point clouds”

Data: [IKG, University Hannover, C. Brenner]

Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models

Implicit Modeling

General Formulation:

▪ Curve / Surface
𝑆 = 𝐱|𝑓 𝐱 = 0

▪ 𝐱 ∈ ℝ𝑑 , 𝑓 𝐱 ∈ ℝ, 𝑑 = 2,3,…

▪ S is (usually) a 𝑑 − 1 dimensional object

Surface described implicitly

▪ Set of points where 𝑓 vanishes: 𝑓 𝐱 = 0

▪ Alternative notation: 𝑆 = 𝑓−1 0

▪ Aka.: “Level set method”

Example:

▪ Circle: 𝑥2 + 𝑦2 = 𝑟2

⇔ 𝑥2 + 𝑦2 − 𝑟2

𝑓𝑟 𝑥,𝑦

= 0

▪ Sphere: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

Special Case:

▪ Signed distance field

▪ Function value is signed distance to surface

▪ Negative means inside, positive means outside

▪ Circle: 𝑓𝑟 𝑥, 𝑦 = sign 𝑥2 + 𝑦2 − 𝑟2 𝑥2 + 𝑦2 − 𝑟2

𝑟2

Implicit Modeling

𝑥2

𝑦2

Implicit Modeling: Pros & Cons
Advantages:

▪ Topology changes easy

▪ In principle…

▪ Standard technique for
simulations with
free boundaries

▪ Example: fluid simulation

▪ (evolving water-air interface)

▪ Other applications:

▪ Surface reconstruction

▪ “Blobby surfaces”

▪ Surface analysis (local)

Implicit Modeling: Pros & Cons

Disadvantages:

▪ Need to solve inversion problem 𝑆 = 𝑓−1 0

▪ More complex / slower algorithms

▪ Usually needs more memory than meshes

▪ Sharp features difficult

Implicit Function Types

Use depends on application:

▪ Signed implicit function
▪ Solid modeling

▪ Interior well defined

▪ Signed distance function
▪ Frequently used

▪ Constant gradient = stable surface definition

▪ Distance values useful

▪ Squared distance function
▪ Least-squares (Gaussian cross-section)

▪ Modeling of noise

▪ Surface extraction less stable (gradient vanishes!).

signed distance

Linear Representations

Two basic techniques

▪ Simple grids (“finite differences”)

▪ Full linear ansatz (“finite elements”)

▪ Grids of basis functions

▪ Hierarchical / adaptive grids

▪ Radial basis functions / particles

Regular Grids

Discretization:

▪ Regular grid of values fi,j

▪ Grid spacing h

▪ Often: Finite difference
approximation

())(
1

)()(,1)()(),(hOff
h

f jiji

x

+−=



− xxxxx

())(
2

1
)(2

)(,1)()(,1)(hOff
h

f jiji

x

+−=



−+ xxxxx

Regular Grids

Variant:

▪ Use only cells near the surface

▪ Saves storage
& computation time

Regular Grids of Basis Functions

Discretization (2D):

▪ Basis function in each
grid cell: bi,j = b(x – i, y – j)

▪ Then

𝑓 𝐱 =෍

𝑖=1

𝑑

෍

𝑗=1

𝑑

𝜆𝑖,𝑗𝑏𝑖,𝑗 𝐱

b2,3

b3,3

Adaptive Grids

Adaptive / hierarchical grid:

▪ Quadtree /octree tessellation
of the domain

▪ Refine where more precision
is necessary

▪ Basis functions in each cell

▪ Size proportional to cell size

Particle Methods

Particle methods /
radial basis functions:

▪ Place a set of “particles” in

space at positions 𝐱𝑖.

▪ Associate each with a radial
basis function 𝑏 𝐱 − 𝐱𝑖 .

▪ Linear discretization:

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏 𝐱 − 𝐱𝑖

Implicit Surfaces
Level Set Extraction

Algorithms

Converting: Implicit → Meshes

▪ Standard Algorithm: Marching Cubes

Marching Cubes

Marching Cubes:

▪ Simple idea

▪ Define and solve a fixed complexity, local problem.

▪ Compute a full solution by solving many such local
problems incrementally.

Marching Cubes

Marching Cubes:

▪ Local problem:

▪ Cube with 8 vertices

▪ Each vertex is either inside or
outside the volume
(i.e. f(x) < 0 or f(x)  0)

▪ How to triangulate this cube?

▪ How to place the vertices?

Triangulation

Triangulation:

▪ 256 different cases

▪ Each of 8 vertices: in or out.

▪ By symmetry: reduction to 15 cases

▪ Reflection, rotation, bit inversion

▪ Computes the topology of the mesh

[source: Wikipedia]

Vertex Placement

How to place the vertices?

▪ Zero-th order: Vertices at edge midpoints

▪ First order: Linearly interpolate vertices along edges.

▪ 𝑓(𝐱) = −0.1 and 𝑓(𝐲) = 0.2

▪ Vertex at ratio 1:2 between 𝐱 and 𝐲

[source: Wikipedia]

Outer Loop

Outer Loop:

▪ Start: bounding box

▪ Divide into cubes (regular grid)

▪ Execute “marching cube”
in each subcube

▪ Output: union of all cube results

▪ Optional:

▪ Vertex hash table to make
mesh consistent

▪ Removes double vertices

Marching Squares

Marching Squares:

▪ 2D version of the algorithm

▪ Same idea, fewer cases

Dynamic Processes

Time Dependent Parameters

Primitive Meshes

Implicit Models Point-Based Models

Parametric Models

Simple Idea

Make Parameters Functions of time 𝑡

▪ Point-Based: Moving points

▪ Meshes: Moving triangles

▪ Moving spline-patch-control points

▪ Moving tetraheda (volumetric “tet-meshes”)

▪ Implicit functions 𝑓(𝐱, 𝑡)

Time-discretization

▪ “Finite-differences” → Array over time

▪ Temporal basis functions

Geometric
Representations Summary

Classification

“Lagrangian” Discretization

▪ Parametric surfaces, meshes, particles

▪ Parametrization of the geometry

▪ Variables move with geometry

“Eularian” Discretization

▪ Bitmaps, voxels, level-set methods

▪ Parametrization of space

▪ Geometry moves through space

▪ Variables remain fixed to spatial location

Summary

▪ Different representations

▪ No silver bullet

▪ All representations work
in principle for all problems

▪ Approximate conversion possible

▪ Effort application dependent

▪ Conceptual effort

▪ Computational effort

Summary

Summary

▪ Linear ansatz is our friend

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝐱

▪ Controls shape

▪ Linear part easy to control

Summary

