Modelling 1

SUMMER TERM 2020

Lecture 7

Representing Geometry

()
o
N
=
4v]
£
L
c
=)
O
c
G
=
o
©
d=
I
S
X
=
@©
=
| -
(@)
Y
<
| -
3
Y
—
>
=
—
(%2}
c

Michael Wand

Motivation

Modeling

Available tools
= Vectors (in linear spaces)
= Functions (high-res vectors)

Goal
= Model more complex phenomena
= Map to linear representation

Example
= Geometric objects
= Many phenomena have a geometric interpretation

Geometric Modeling

What do we want to do?

a

empty space

- (typically R3)

geometric object

_/BC]Rd

Fundamental Problem

Problem

infinite number of points my computer: 32GB of memory

Encode continuous model with finite information

Modeling Approaches

Two Basic Approaches

= Discrete representations
= Fixed discrete bins

= “Continuous” representations
= Mathematical description
= Evaluate continuously

-ixed

3ins (Voxels,

Pixels)

Discrete Representations

You know this...

= Fixed Grid of values:

{1, .., n} x - x {1, ...,nds}] — R%

= Typical

= d, = 2,d; = 3. Bitmap images

= d. =3,d; = 1. Volume data

(scalar fields)

= d. = 2,d; = 1. Depth maps
(range images)

Continuous
Modeling Zoo

Modeling Zoo

a

Primitive Meshes

Parametric Models

Point-Based Models

Implicit Models

Modeling Zoo

A

Primitive Meshes

Parametric Models

Point-Based Models

Implicit Models

Parametric Models

A

Parametric Models
= fmaps from parameter domain Q to target space

= Evaluation of /: one point on the model

output: 1D

output: 2D

output: 3D

t f(t) A t yu t yu /7
)
- /\/ @ Q/
.. Z
Q. - > L > - >
= u X
function graph plane curve space curve

uu A Mu y“

Q - -
Z
3 > >
o >
C > X
" X
deformed area surface
w. I\

I y
o ﬁ‘u
5 Y J
o >
£ X

volumetric object

Linear Modeling?

Linear representation

= f is a linear object "

(u,v)

= Linear ansatz:

d
FO) =D Aibi ()
i=1

2@ @
Non-linear (read: difficult) ° "easy1,§f§‘>:,d'f2C”'t
¢
= Reshaping () (domain) Ay
« Changing the topology IR

= Reparametrization (warping within () ~— fotalleastsquares
= Example: associating points x € Q with data
= “Correspondence problem”

Example

Building Smootr

with B-Sp

-unctions
INES

Goal: Smooth Curves/Surfaces

1 40

Splines in Computer Graphics (& Numerics)
= Curve roughly follows control points
= Curve should be smooth (€C?) everywhere

= Curve should bend minimally
= [N a certain sense, more later

Build smooth function, linear combine from it!

Cubic Uniform B-Splines

Cubic uniform B-Splines 5
= Piecewise cubic functions . /
= C2 continuous *

0.0 1.0 2.0 3.0 4.0

= Popular choice

Ansatz

= Design one basis function b(t)
= b(t) is C2 continuous.
= b(t) is piecewise polynomial, degree 3 (cubic).
= b(t) has local support.
= Overlaying shifted b(t + i) forms a partition of unity.
= b(t)=0forallt

Basis Function

1 1.0
Pl(t)—g 0.8
0.6 - N D-(1-
pz(t)—1(1+3t+3t ~3¢%) Po(t-1Y N\ ps(t-2)
6 04 /
p3(t)—1(4 6t” +3t°) 0.2 P1(t)/ P4(t-3)
1 0.0 1.0 2.0 3.0 4.0
t)==\1-3t+3t* -t . _
22 6() basis function b(t)
(0 ift<0 (0 ift<0
p,(t) if0<t<1 -t if0<t<1
b(t) e s\L+3(t-1)+3(¢ - 1> -3(t-1)}) if1<t<2
= = <
py(t-2) if2<t<3 | L(4—6(t—2)*+3(t-2)°) if2<t<3
p,(t-3) if3<t<4 |L(1-3(t-3)+3(t-3)*—(t—3)°) if3<t<4
0 ift >4 0 ift >4

1.0

0.8

08 pot-1Y” N ps(t-2)

0.4

0.2 P1/(t)/ Q@@
0.0 1.0 2.0 3.0 4.0

Shifted Basis Functions

basis function b(t)

Basis function:
= Consists of four polynomial parts p;...p,.

= Shifted basis b(t — i): spacing of 1.

= Each interval to be used must be overlapped by 4 different b,

1.0

0.8

0.6

0.4

X X X
WAV /XX\ \
0.2[I i, y‘BZ

0.0 1.0 2.0 3.0

4.0 5.0 6.0
shifted basis functions b(t-i) for [0..6]

Example: Uniform B-Spline Curves

one segment

two segments

o three segments

./\-

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)

Example: Unitorm

P./\

P1 P4

Ps

P1 .p4

. .p3
p% .p3
m .
()
Ps
.pl P p4

B-Spline Curves

one segment

4
f= Z Pib;
i=1

two segments

5
f = z p;b;
i=1

o three segments
Pe

/ f= 26: Pib;
i=1

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)

Spline Surfaces

Tensor product surfaces
= Simple construction
= Grid of control points
= Rectangular patches

Tensor Product Surfaces

Simple ldea:
= Basis for a one dimensional function space

Bewrv) = £p (t), b,(t), ..., b, ()},
bi: (Cl, b) - R

= Two parameter basis from all possible products:

BT = {by (u)by (v), by (Wb, (), .., by (W by (V)]
bi ¥ b] (Cl, b)z - R

Tensor Product Surfaces

Tensor product basis

by (u) b,(u) ba(u)

b,(v) b,(v)b,(u) b,(V)by(u) by(V)bs(u
bo(v) by(V)bs(u) by(V)by(U) by

bs(v) bs(V)b,(u) bs(V)b,(u) bs(v)bs(u
() by (

by(v) bs(V)D4(U) DuV)bo(U) by

2D Spline Basis

Tensor Product Surfaces

Tensor Product Surfaces:

q

n n

Flu,v) = z z b;(u) b;(v) - p; ;

i=1J=1

= “Curves of Curves”
= Order does not matter

N

€S

Meshes of Spline Patc

Spline mesh
= Quad-mesh
= Continuity conditions etc. (lecture of its own)
= Popular choice: “Trimmed NURBS”

= Rational, non-uniform B-Splines; higher degrees
= Trimming curves in parameter domain

Modeling Zoo

a

Primitive Meshes

Parametric Models

Point-Based Models

Implicit Models

Primitive Meshes

Primitive Meshes

= Collection of geometric primitives
= Triangles, Quadrilaterals

= Spline patches etc.

= Primitives are typically
parametric surfaces

Triangle meshes rule the world (“triangle soup”)

Primitive Meshes

Composite model

= Mesh encodes topology, rough shape

= Primitive parameter encode local geometry

Triangle Meshes

Attributes

How to define a triangle?
= We need three points in R3(obviously).
= But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

texture per-vertex texture

coordinates
per-vertex color
(etc...)

Shared Attributes in Meshes

In Triangle Meshes:
= Attributes might be shared or separated:

|

pd
g -
adjacent triangles adjacent triangles

share normals have separated normals

Attributes

In general:

= Vertex attributes:
« Position (mandatory)
= Normals
= Color
= Texture Coordinates

= Face attributes:
= Color
= [exture

= Edge attributes (rarely used)
= £.g.: Visible line

Data Structures

Simplest: List of vertices, edges, triangles

v,: (posx posy posy), attrib,, ..., attrib,
Vo (POSX posy posy);.éttribl, ..., attrib,_ .
e,: (i1ndex; 1ndex,), attrib,, ..., attrib,_
e,.: (1ndex; 1ndex,), éééribl, ..., attrib,__
t,: (1dx, 1dx, 1idxj3), attrib,, ..., attrib,_,

t,.: (1dx, 1dx, 1idxj3), attrib,, ..., attrib,_, f?

Adjacency Data Structure

Half edge data structure:

Half edges, connected by clockwise / ccw pointers
Pointers to opposite half edge
Pointers to/from start vertex of each edge

Pointers to/from left face of each edge

Implementation

// a half edge

struct HalfEdge {
HalfEdge* next;
HalfEdge* previous;
HalfEdge* opposite;

Vertex* origin;

Face* leftFace;

EdgeData* edge;
};5

// the data of the edge
// stored only once
struct EdgeData {
HalfEdge* anEdge;
/* attributes */

}s

// a vertex
struct Vertex {
HalfEdge* someEdge;
/* vertex attributes */

}s

// the face (triangle, poly)
struct Face {

HalfEdge* half;

/* face attributes */

}s

Modeling Zoo

a

Primitive Meshes

Parametric Models

Point-Based Models

Implicit Models

Particle Representations

Point-based Representations
= Set of points
= Points are (irregular) sample of the object

= Need additional information to deal with “the empty
space around the particles”

o ° additional //r\

assumptions

Meshless Meshes...

Point Clouds
= Triangle mesh without the triangles
= Only vertices
= Attributes per point

per-vertex normals

per-vertex color

Particle Representations

Helpful Information

= Each particle may carries a set of attributes
« Must have: Its position

« Additional geometry:
Density (sample spacing), surface normals
= Additional attributes:

Color, physical quantities (mass, pressure, temperature), ...
= Addition information helps reconstructing
the geometric object described by the particles

The Wrath of Khan

Why Star Trek is at fault...

= Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

= “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” |[Reeves 1983]

= Movie: Genesis sequence

Geometric Modeling

3D Scanners

= 3D scanner yield point
clouds
= Have to deal with points
anyway

= Algorithms that directly
work on “point clouds”

Data: [IKG, University Hannover, C. Brenner]

Modeling Zoo

a

Primitive Meshes

Parametric Models

Point-Based Models

Implicit Models

Implicit Modeling

General Formulation:
= Curve / Surface

S =x|f(x) =0}
s x€eRYfF(x) ER,d =2,3,..
= Sis (usually) a d — 1 dimensional object

Surface described implicitly
= Set of points where f vanishes: f(x) =0
= Alternative notation: S = f~1(0)
= Aka.: “Level set method”

Implicit Modeling

Example:
: Circle'x2 +y = r?
fr (x,y)

= Sphere: x% + y% + 2% = r? i

Special Case:

= Signed distance field
= Function value is signed distance to surface

= Negative means inside, positive means outside

= Circle: f.(x,y) = sign(x? +v? — r2)/|x2 +y2 — r2

Implicit Modeling:

Advantages:

= Topology changes easy
= [N principle...
= Standard technique for

simulations with
free boundaries

« Example: fluid simulation
« (evolving water-air interface)

= Other applications:
= Surface reconstruction
= "Blobby surfaces”
« Surface analysis (local)

Pros & Cons

Implicit Modeling: Pros & Cons

Disadvantages:
= Need to solve inversion problem S = f~1(0)
= More complex / slower algorithms
= Usually needs more memory than meshes
= Sharp features difficult

Implicit Function Types

Use depends on application:

= Signed implicit function
= Solid modeling
= Interior well defined

= Signed distance function
= Frequently used
» Constant gradient = stable surface definition
= Distance values useful

= Squared distance function
» Least-squares (Gaussian cross-section)
« Modeling of noise
= Surface extraction less stable (gradient vanishes!).

signed distance

Linear Representations

Two basic techniques
= Simple grids (‘finite differences”)

= Full linear ansatz (‘finite elements”)
= Grids of basis functions
= Hierarchical / adaptive grids
» Radial basis functions / particles

Regular Grids

Discretization: r

= Regular grid of valuesf,.J.

= Grid spacing h

= Often: Finite difference

approximation

o 1
8_ f(X) — Z (fi(x),j(x) B fi(x)—l,j(x))"‘ O(h)

o) 1
8_ f(x)= E (fi(x)+1,j(x) — fi(x)—l,j(x))"‘ O(hz)

Regular Grids

Variant:
= Use only cells near the surface

= Saves storage

& computation time

Reqgular Grids of Basis Functi

ONns

Discretization (2D):

= Basis function in each

gridcell: b;;=b(x -1,y -)

MQ

= Then
d
=) D Aijbi; ()

[
[

[j=1

I

Adaptive Grids

Adaptive / hierarchical grid:

= Quadtree /octree tessellation
of the domain

= Refine where more precision

IS necessary @

= Basis functions in each cell

= Size proportional to cell size

Particle Methods

Particle methods /
radial basis functions: . L

= Place a set of “particles” in /'/0/‘/‘*
space at positions x;. s B =

= Associate each with a radial
basis function b(x — x,).

= Linear discretization:

[
d
fG) =) Aib(x—x) p—
=1

mplicit Surfaces
_evel Set Extraction

Algorithms

Converting: Implicit - Meshes
= Standard Algorithm: Marching Cubes

Marching Cubes

Marching Cubes:

= Simple idea
= Define and solve a fixed complexity, local problem.

« Compute a full solution by solving many such local
problems incrementally.

Marching Cubes

Marching Cubes:

= Local problem:
= Cube with 8 vertices

= Fach vertex is either inside or
outside the volume

(ile. f(x) <0 or f(x) > 0)
= How to triangulate this cube?
= How to place the vertices?

C

Triangulation

A\
= oH @ ©
& A M 4@

[source: Wikipedia]

‘\
\
\
\

Triangulation:

= 256 different cases
= Fach of 8 vertices: in or out.

= By symmetry: reduction to 15 cases
= Reflection, rotation, bit inversion

= Computes the topology of the mesh

Vertex Placement

N\
= e 0 @ ©
= 73 W @

] [source: Wikipedia]
How to place the vertices?

= Zero-th order: Vertices at edge midpoints

= First order: Linearly interpolate vertices along edges.

= f(x) = —0.1and f(y) = 0.2
= Vertex at ratio 1:2 between x and y

‘\
\
\
\

Quter Loop

Outer Loop:
= Start: bounding box
= Divide into cubes (regular grid)

= Execute “marching cube”
in each subcube

= Qutput: union of all cube results

= Optional:
= VVertex hash table to make
mesh consistent

= Removes double vertices

Marching Squares

L INHAC L]

Marching Squares:
= 2D version of the algorithm

= Same idea, fewer cases

Dynamic Processes

Time Dependent

Parametric Models

Implicit Models

Parameters

A A

-

e o, y
QN
R

Primitive Meshes

Point-Based Models

Simple |dea

Make Parameters Functions of time ¢
= Point-Based: Moving points

= Meshes: Moving triangles
= Moving spline-patch-control points
» Moving tetraheda (volumetric “tet-meshes”)

= Implicit functions f(x,t)

Time-discretization
= “Finite-differences” — Array over time
= Temporal basis functions

Geometric
Representations Summary

Classification

“Lagrangian” Discretization
= Parametric surfaces, meshes, particles
= Parametrization of the geometry

= Variables move with geometry

“Eularian” Discretization
= Bitmaps, voxels, level-set methods

= Parametrization of space

= Geometry moves through space
» Variables remain fixed to spatial location

Summary

Summary
= Different representations ‘_@
= No silver bullet Parametric Models primitive Meshes
= All representations work |
in principle for all problems
- Approximate conversion possible mpier modes oarticle Models

= Effort application dependent

» Conceptual effort
» Computational effort

Summary

Summary
= Linear ansatz is our friend

d
fO) =) Aibi ()
=1

= Controls shape
« Linear part easy to control

