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Motivation



Modeling

Available tools

▪ Vectors (in linear spaces)

▪ Functions (high-res vectors)

Goal

▪ Model more complex phenomena

▪ Map to linear representation

Example

▪ Geometric objects

▪ Many phenomena have a geometric interpretation



Geometric Modeling

What do we want to do?
empty space

(typically ℝ3)

geometric object

ℬ ⊂ ℝ𝑑

ℬ

ℝ𝑑



Fundamental Problem

Problem

ℝ𝑑

infinite number of points my computer: 32GB of memory

Encode continuous model with finite information

ℬ



Modeling Approaches

Two Basic Approaches

▪ Discrete representations

▪ Fixed discrete bins

▪ “Continuous” representations

▪ Mathematical description

▪ Evaluate continuously



Fixed Bins (Voxels, Pixels)



Discrete Representations

You know this...

▪ Fixed Grid of values:
1,… , 𝑛1 ×⋯× 1,… , 𝑛𝑑𝑠 → ℝ𝑑𝑡

▪ Typical

▪ 𝑑𝑠 = 2, 𝑑𝑡 = 3: Bitmap images

▪ 𝑑𝑠 = 3, 𝑑𝑡 = 1: Volume data 
(scalar fields)

▪ 𝑑𝑠 = 2, 𝑑𝑡 = 1: Depth maps
(range images)



Volume Data (RGB𝛼)



Continuous 
Modeling Zoo



Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models



Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models



Parametric Models

Parametric Models

▪ f maps from parameter domain  to target space

▪ Evaluation of f : one point on the model

u

v

(u, v)

f (u, v)f

ℝds
Sℝdt
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Linear Modeling?
Linear representation

▪ 𝑓 is a linear object

▪ Linear ansatz:

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝐱

Non-linear (read: difficult)

▪ Reshaping Ω (domain)

▪ Changing the topology

▪ Reparametrization (warping within Ω)

▪ Example: associating points 𝐱 ∈ Ω with data

▪ “Correspondence problem”

“easy”
“difficult”

→ total least squares



Example

Building Smooth Functions 
with B-Splines



Goal: Smooth Curves/Surfaces

Splines in Computer Graphics (& Numerics)

▪ Curve roughly follows control points

▪ Curve should be smooth (𝐶2) everywhere

▪ Curve should bend minimally

▪ In a certain sense, more later

Build smooth function, linear combine from it!
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Cubic Uniform B-Splines

Cubic uniform B-Splines

▪ Piecewise cubic functions

▪ 𝐶2 continuous

▪ Popular choice

Ansatz

▪ Design one basis function b(t)

▪ 𝑏(𝑡) is C2 continuous.

▪ 𝑏(𝑡) is piecewise polynomial, degree 3 (cubic).

▪ 𝑏(𝑡) has local support.

▪ Overlaying shifted 𝑏(𝑡 + 𝑖) forms a partition of unity.

▪ 𝑏(𝑡)  0 for all 𝑡
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Basis Function
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Shifted Basis Functions

Basis function:

▪ Consists of four polynomial parts p1...p4.

▪ Shifted basis b(t – i): spacing of 1.

▪ Each interval to be used must be overlapped by 4 different bi.
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Example: Uniform B-Spline Curves
one segment

two segments

three segments

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)



Example: Uniform B-Spline Curves
one segment

two segments

three segments

x and y coordinate: linear combination of B-Spline basis
n+3 coefficients (4 for each segment)
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Spline Surfaces

Tensor product surfaces

▪ Simple construction

▪ Grid of control points

▪ Rectangular patches



Tensor Product Surfaces

Simple Idea:

▪ Basis for a one dimensional function space

𝐵 𝑐𝑢𝑟𝑣 = 𝑏1 𝑡 , 𝑏2 𝑡 , … , 𝑏𝑛 𝑡 ,

𝑏𝑖: 𝑎, 𝑏 → ℝ

▪ Two parameter basis from all possible products:

𝐵 𝑠𝑢𝑟𝑓 = 𝑏1 𝑢 𝑏1 𝑣 , 𝑏1 𝑢 𝑏2 𝑣 ,… , 𝑏𝑛 𝑢 𝑏𝑛 𝑣

𝑏𝑖 ⋅ 𝑏𝑗: 𝑎, 𝑏
2 → ℝ



Tensor Product Surfaces

Tensor product basis

b1(u) b2(u) b3(u) b4(u)

b1(v) b1(v)b1(u) b1(v)b2(u) b1(v)b3(u) b1(v)b4(u)

b2(v) b2(v)b1(u) b2(v)b2(u) b2(v)b3(u) b2(v)b4(u)

b3(v) b3(v)b1(u) b3(v)b2(u) b3(v)b3(u) b3(v)b4(u)

b4(v) b4(v)b1(u) b4(v)b2(u) b4(v)b3(u) b4(v)b4(u)



2D Spline Basis



Tensor Product Surfaces

Tensor Product Surfaces:

▪ “Curves of Curves”

▪ Order does not matter

𝑓 𝑢, 𝑣 =෍
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Meshes of Spline Patches

Spline mesh

▪ Quad-mesh

▪ Continuity conditions etc. (lecture of its own)

▪ Popular choice: “Trimmed NURBS”

▪ Rational, non-uniform B-Splines; higher degrees

▪ Trimming curves in parameter domain

1

2

3



Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models



Primitive Meshes

Primitive Meshes

▪ Collection of geometric primitives

▪ Triangles, Quadrilaterals

▪ Spline patches etc.

▪ Primitives are typically
parametric surfaces

Triangle meshes rule the world (“triangle soup”)



Primitive Meshes

Composite model

▪ Mesh encodes topology, rough shape

▪ Primitive parameter encode local geometry

1

2

3



Triangle Meshes



Attributes

How to define a triangle?

▪ We need three points in ℝ3(obviously).

▪ But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)



Shared Attributes in Meshes

In Triangle Meshes:

▪ Attributes might be shared or separated:

adjacent triangles 
share normals

adjacent triangles 
have separated normals



Attributes

In general:

▪ Vertex attributes:

▪ Position (mandatory)

▪ Normals

▪ Color

▪ Texture Coordinates

▪ Face attributes:

▪ Color

▪ Texture

▪ Edge attributes (rarely used)

▪ E.g.: Visible line



Data Structures

Simplest: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat



Half edge data structure:

▪ Half edges, connected by clockwise / ccw pointers

▪ Pointers to opposite half edge

▪ Pointers to/from start vertex of each edge

▪ Pointers to/from left face of each edge

Adjacency Data Structure



// a vertex
struct Vertex {

HalfEdge* someEdge;
/* vertex attributes */

};

// the face (triangle, poly)
struct Face {

HalfEdge* half;
/* face attributes */

};

Implementation

// a half edge
struct HalfEdge {

HalfEdge* next;
HalfEdge* previous;
HalfEdge* opposite;

Vertex* origin;
Face* leftFace;
EdgeData* edge;

};

// the data of the edge
// stored only once
struct EdgeData {

HalfEdge* anEdge;
/* attributes */

};



Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models



Particle Representations

Point-based Representations

▪ Set of points

▪ Points are (irregular) sample of the object

▪ Need additional information to deal with “the empty 
space around the particles”

additional
assumptions



Meshless Meshes...

Point Clouds

▪ Triangle mesh without the triangles

▪ Only vertices

▪ Attributes per point

per-vertex normals

per-vertex color



Particle Representations

Helpful Information

▪ Each particle may carries a set of attributes

▪ Must have: Its position

▪ Additional geometry: 
Density (sample spacing), surface normals

▪ Additional attributes:
Color, physical quantities (mass, pressure, temperature), ...

▪ Addition information helps reconstructing
the geometric object described by the particles



The Wrath of Khan

Why Star Trek is at fault...

▪ Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

▪ “Particle Systems—a Technique for Modeling a Class of 
Fuzzy Objects” [Reeves 1983]

▪ Movie: Genesis sequence 



Geometric Modeling

3D Scanners

▪ 3D scanner yield point 
clouds

▪ Have to deal with points 
anyway

▪ Algorithms that directly 
work on “point clouds”

Data: [IKG, University Hannover, C. Brenner]



Modeling Zoo

Parametric Models Primitive Meshes

Implicit Models Point-Based Models



Implicit Modeling

General Formulation:

▪ Curve / Surface
𝑆 = 𝐱|𝑓 𝐱 = 0

▪ 𝐱 ∈ ℝ𝑑 , 𝑓 𝐱 ∈ ℝ, 𝑑 = 2,3,…

▪ S is (usually) a 𝑑 − 1 dimensional object

Surface described implicitly

▪ Set of points where 𝑓 vanishes: 𝑓 𝐱 = 0

▪ Alternative notation: 𝑆 = 𝑓−1 0

▪ Aka.: “Level set method”



Example:

▪ Circle: 𝑥2 + 𝑦2 = 𝑟2

⇔ 𝑥2 + 𝑦2 − 𝑟2

𝑓𝑟 𝑥,𝑦

= 0

▪ Sphere:  𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

Special Case:

▪ Signed distance field

▪ Function value is signed distance to surface

▪ Negative means inside, positive means outside

▪ Circle: 𝑓𝑟 𝑥, 𝑦 = sign 𝑥2 + 𝑦2 − 𝑟2 𝑥2 + 𝑦2 − 𝑟2

𝑟2

Implicit Modeling

𝑥2

𝑦2



Implicit Modeling: Pros & Cons
Advantages:

▪ Topology changes easy

▪ In principle…

▪ Standard technique for 
simulations with
free boundaries

▪ Example: fluid simulation

▪ (evolving water-air interface)

▪ Other applications:

▪ Surface reconstruction

▪ “Blobby surfaces”

▪ Surface analysis (local)



Implicit Modeling: Pros & Cons

Disadvantages:

▪ Need to solve inversion problem 𝑆 = 𝑓−1 0

▪ More complex / slower algorithms

▪ Usually needs more memory than meshes

▪ Sharp features difficult



Implicit Function Types

Use depends on application:

▪ Signed implicit function
▪ Solid modeling

▪ Interior well defined

▪ Signed distance function
▪ Frequently used

▪ Constant gradient = stable surface definition

▪ Distance values useful

▪ Squared distance function
▪ Least-squares (Gaussian cross-section)

▪ Modeling of noise

▪ Surface extraction less stable (gradient vanishes! ).

signed distance



Linear Representations

Two basic techniques

▪ Simple grids (“finite differences”)

▪ Full linear ansatz (“finite elements”)

▪ Grids of basis functions

▪ Hierarchical / adaptive grids 

▪ Radial basis functions / particles



Regular Grids

Discretization:

▪ Regular grid of values fi,j

▪ Grid spacing h

▪ Often: Finite difference
approximation
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Regular Grids

Variant:

▪ Use only cells near the surface

▪ Saves storage 
& computation time



Regular Grids of Basis Functions

Discretization (2D):

▪ Basis function in each
grid cell: bi,j = b(x – i, y – j)

▪ Then

𝑓 𝐱 =෍

𝑖=1

𝑑

෍

𝑗=1

𝑑

𝜆𝑖,𝑗𝑏𝑖,𝑗 𝐱

b2,3

b3,3



Adaptive Grids

Adaptive / hierarchical grid:

▪ Quadtree /octree tessellation 
of the domain

▪ Refine where more precision
is necessary

▪ Basis functions in each cell

▪ Size proportional to cell size



Particle Methods

Particle methods / 
radial basis functions:

▪ Place a set of “particles” in 

space at positions 𝐱𝑖.

▪ Associate each with a radial 
basis function 𝑏 𝐱 − 𝐱𝑖 .

▪ Linear discretization:

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏 𝐱 − 𝐱𝑖



Implicit Surfaces
Level Set Extraction



Algorithms

Converting: Implicit → Meshes

▪ Standard Algorithm: Marching Cubes



Marching Cubes

Marching Cubes:

▪ Simple idea

▪ Define and solve a fixed complexity, local problem.

▪ Compute a full solution by solving many such local 
problems incrementally.



Marching Cubes

Marching Cubes:

▪ Local problem:

▪ Cube with 8 vertices

▪ Each vertex is either inside or
outside the volume
(i.e. f(x) < 0 or f(x)  0)

▪ How to triangulate this cube?

▪ How to place the vertices?



Triangulation

Triangulation:

▪ 256 different cases

▪ Each of 8 vertices: in or out.

▪ By symmetry: reduction to 15 cases

▪ Reflection, rotation, bit inversion

▪ Computes the topology of the mesh

[source: Wikipedia]



Vertex Placement

How to place the vertices?

▪ Zero-th order: Vertices at edge midpoints

▪ First order: Linearly interpolate vertices along edges.

▪ 𝑓(𝐱) = −0.1 and 𝑓(𝐲) = 0.2

▪ Vertex at ratio 1:2 between 𝐱 and 𝐲

[source: Wikipedia]



Outer Loop

Outer Loop:

▪ Start: bounding box

▪ Divide into cubes (regular grid)

▪ Execute “marching cube” 
in each subcube

▪ Output: union of all cube results

▪ Optional: 

▪ Vertex hash table to make
mesh consistent

▪ Removes double vertices



Marching Squares

Marching Squares:

▪ 2D version of the algorithm

▪ Same idea, fewer cases



Dynamic Processes



Time Dependent Parameters

Primitive Meshes

Implicit Models Point-Based Models

Parametric Models



Simple Idea

Make Parameters Functions of time 𝑡

▪ Point-Based: Moving points

▪ Meshes: Moving triangles

▪ Moving spline-patch-control points

▪ Moving tetraheda (volumetric “tet-meshes”)

▪ Implicit functions 𝑓(𝐱, 𝑡)

Time-discretization

▪ “Finite-differences” → Array over time

▪ Temporal basis functions



Geometric
Representations Summary



Classification

“Lagrangian” Discretization

▪ Parametric surfaces, meshes, particles

▪ Parametrization of the geometry

▪ Variables move with geometry

“Eularian” Discretization

▪ Bitmaps, voxels, level-set methods

▪ Parametrization of space

▪ Geometry moves through space

▪ Variables remain fixed to spatial location



Summary

▪ Different representations

▪ No silver bullet

▪ All representations work
in principle for all problems

▪ Approximate conversion possible

▪ Effort application dependent

▪ Conceptual effort

▪ Computational effort

Summary



Summary

▪ Linear ansatz is our friend

𝑓 𝐱 =෍

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝐱

▪ Controls shape

▪ Linear part easy to control

Summary


